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Abstract

A recent variation of the classical geodetic problem, the strong geodetic prob-

lem, is defined as follows. If G is a graph, then sg(G) is the cardinality of a smallest

vertex subset S, such that one can assign a fixed geodesic to each pair {x, y} ⊆ S

so that these
(|S|

2

)
geodesics cover all the vertices of G. In this paper, the strong

geodetic problem is studied on Cartesian product graphs. A general upper bound

is proved on the Cartesian product of a path with an arbitrary graph and showed

that the bound is tight on thin grids and thin cylinders.

Keywords: geodetic problem; strong geodetic problem; Cartesian product of graphs;

grids; cylinders

AMS Subj. Class.: 05C12, 05C70, 05C76; 68Q17

1 Introduction

Covering vertices of a graph with shortest paths is a problem that naturally appears in

different applications; modelling them one arrives at different variations of the problem.
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The classical geodetic problem [9] is to determine a smallest set of vertices S of a

given graph such that the (shortest-path) intervals between them cover all the vertices.

The investigation on this problem up to 2011 has been surveyed in [2], see also the

book [18] for a general framework on the geodesic convexity. Recent developments

on the geodetic problem include the papers [6, 7, 19], for a detailed literature survey

see [14, 15]. Another variation of the shortest-path covering problem is the isometric

path problem [8] where one is asked to determine the minimum number of geodesics

required to cover the vertices, see also [17]. Yet another related concept is the Steiner

(geodetic) number which generalizes the geodetic number from intervals between two

vertices to Steiner intervals between largest vertex subsets. More precisely, the Steiner

interval I(S) of S is the union of all the vertices of G that belong to some Steiner

tree for S, the smallest cardinality of a set S such that I(S) = V (G) is the Steiner

(geodetic) number of G. In [16] this invariant was denoted sg(G), while in most papers

it is denoted with s(G), cf. [5, 10, 21], so it seems that using the notation sg(G) in this

paper does not present a conflict.

Motivated by applications in social networks, very recently the so called strong

geodetic problem was introduced in [14] as follows. Let G = (V,E) be a graph. Given

a set S ⊆ V , for each pair of vertices {x, y} ⊆ S, x 6= y, let P̃ (x, y) be a selected fixed

shortest path between x and y. Then we set

Ĩ(S) = {P̃ (x, y) : x, y ∈ S} ,

and let V (Ĩ(S)) =
⋃

P̃∈Ĩ(S)
V (P̃ ). If V (Ĩ(S)) = V for some Ĩ(S), then the set S is

called a strong geodetic set. The strong geodetic problem is to find a minimum strong

geodetic set S of G. Clearly, the collection Ĩ(S) of geodesics consists of exactly
(|S|

2

)
paths. The cardinality of a minimum strong geodetic set is the strong geodetic number

of G and denoted by sg(G). For an edge version of the strong geodetic problem see [15].

In [14] it was proved that the strong geodetic problem is NP-complete. Hence it is

desirable to determine it on specific classes of graphs of wider interest. In this paper we

follows this direction and proceed as follows. In the next section we first recall relevant

properties of the Cartesian product of graphs. Afterwards we prove a lower bound

on the strong geodetic number of Cartesian products in which one factor is a path.

In Section 3 we demonstrate that the bound is tight for grids Pr �Pn and cylinders

Pr �Cn for the case when r is large enough with respect to n; we will roughly refer to

such graphs as thin grids and thin cylinders, respectively. But first we define concepts

needed.
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All graphs considered in this paper are simple and connected. The distance dG(u, v)

between vertices u and v of a graph G is the number of edges on a shortest u, v-path

alias u, v-geodesic. The diameter diam(G) of G is the maximum distance between

the vertices of G. We will use the notation [n] = {1, . . . , n} and the convention that

V (Pn) = [n] for any n ≥ 1 as well as V (Cn) = [n] for any n ≥ 3, where the edges of Pn

and of Cn are defined in the natural way.

The Cartesian product G�H of graphs G and H is the graph with the vertex set

V (G)×V (H), vertices (g, h) and (g′, h′) being adjacent if either g = g′ and hh′ ∈ E(H),

or h = h′ and gg′ ∈ E(G). If h ∈ V (H), then the subgraph of G�H induced by the

vertices of the form (x, h), x ∈ V (G), is isomorphic to G; it is denoted with Gh and

called a G-layer. Analogously H-layers are defined; if g ∈ V (G), then the corresponding

H-layer is denoted Hg. G-layers are also referred to as horizontal layers or, especially

for grid as rows, while H-layers are vertical layers or columns.

2 A lower bound on sg(G�Pr)

In this section we prove a lower bound on the strong geodetic number of Cartesian

products in which one factor is a path.

The classical geodetic number was already well investigated in Cartesian products

of graphs, see [1, 13, 20]. The obtained results appear (and are!) more general than

the results we present in this paper for the strong geodetic number. We believe that

a reason for this is that the strong geodetic problem seems intrinsically more difficult

than the geodetic problem. For instance, it is straightforward to see that the geodetic

number of the complete bipartite graph Km,n is equal to min{m,n, 4}, see [9]. On the

other hand, to determine the strong geodetic number of Km,n is very demanding. As

shown in [12] this reduces to a non-linear optimization problem, and with quite some

effort, it was proved that if n ≥ 6, then

sg(Kn,n) =

2
⌈
−1+

√
8n+1

2

⌉
; 8n− 7 is not a perfect square,

2
⌈
−1+

√
8n+1

2

⌉
− 1; 8n− 7 is a perfect square .

The statement of this result and the fact that for m 6= n the value of sg(Km,n) is not

yet know points out the difficulty of the strong geodetic number. The intuition for

this is that in order to determine the geodetic number, one “only” needs to find an

appropriate set of vertices, while for the strong geodetic number this is only half of the
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job because after selecting an appropriate set of vertices one has to carefully determine

specific geodesics among the pairs of vertices.

We start by recalling some facts about the Cartesian product, especially about its

metric properties. The Cartesian product is an associative and commutative opera-

tion. More precisely, the latter assertion means that the graphs G�H and H �G are

isomorphic. We will implicitly (and explicitly) use this fact several times. Recall also

that G�H is connected if and only if both G and H are connected. Moreover, the

metric structure of Cartesian product graphs is well-understood, see [11, Chapter 12].

Its basis is the following result that was independently discovered several times, cf. [11,

Lemma 12.1].

Proposition 2.1 If (g, h) and (g′, h′) are vertices of a Cartesian product G�H, then

dG�H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′) .

If (g, h) ∈ V (G�H), then the projections pG : V (G�H) → V (G) and pH :

V (G�H)→ V (H) are defined with pG((g, h)) = g and pH((g, h)) = h. The projections

pG and pH can be extended such that they also map the edges of G�H. More precisely,

if e = (g, h)(g′, h) ∈ E(G�H), then pG(e) = gg′ ∈ E(G), and if e = (g, h)(g, h′) ∈
E(G�H), then pG(e) = g ∈ V (G). Furthermore, we can also consider pG(X) and

pH(X), where X is a subgraph of G�H.

Proposition 2.1 together with the fact that if (g, h) and (g′, h) are vertices of the

same G-layer, then every geodesic between (g, h) and (g′, h) lies completely in the layer

(see the first exercise in [11, 12.3 Exercises]) implies the following.

Corollary 2.2 Let P be a geodesic in G�H. If e = (g, h)(g′, h) ∈ E(P ), then e is the

unique edge of P with pG(e) = gg′. Moreover, pG(P ) is a geodesic in G.

Of course, by the commutativity of the Cartesian product, the assertions of Corol-

lary 2.2 also hold for the projection of P on H.

After this preparation we can state the following technical lemma.

Lemma 2.3 Let G and H be graphs, Ω be a minimum strong geodetic set of G�H,

and Ĩ(Ω) its corresponding set of geodesics. If |V (H)| > diam(G)
(|Ω|

2

)
+ |Ω|, then there

exists a G-layer Gh such that

(i) E(Gh) ∩
(
∪
P∈Ĩ(Ω)

E(P )
)

= ∅ and
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(ii) V (Gh) ∩ Ω = ∅.

Proof. Let t be the number of G-layers with the property that none of their edges lies

on some path from Ĩ(Ω), that is,

t =
∣∣∣{h ∈ V (H) : E(Gh) ∩

(
∪
P∈Ĩ(Ω)

E(P )
)

= ∅
}∣∣∣ .

Let P be a geodesic from Ĩ(Ω). Consider the set of edges pG(E(P )) of P that lie in

G-layers. If e, e′ ∈ pG(E(P )), then pG(e) 6= pG(e′) by Corollary 2.2, that is, e and e′

project on different edges of G. If follows that the edges of P lie in at most diam(G)

number of different G-layers. Hence, since |Ĩ(Ω)| =
(|Ω|

2

)
, the number of G-layers that

contain edges of the paths from Ĩ(Ω) is at most diam(G)
(|Ω|

2

)
. Consequently, because

we have assumed that |V (H)| > diam(G)
(|Ω|

2

)
+ |Ω| and as |V (H)| is just the number

of G-layers, we infer that t > |Ω|. Therefore, by the pigeon-hole principle there exists

at least one G-layer Gh, such that E(Gh)∩
(
∪
P∈Ĩ(Ω)

E(P )
)

= ∅ and V (Gh)∩Ω = ∅ as

claimed. �

We now restrict to Cartesian products of the form G�Pr. Since we have assumed

that V (Pn) = [n], the G-layers of G�Pr are thus denoted with G1, . . . , Gr. See Fig. 1

for a graph G, the Cartesian product G�P4, and the four G-layers.

Figure 1: (a) Factor G. (b) G�P4, where the dotted edges are the edges of the P4-

layers, the other edges belong to the G-layers G1, G2, G3, G4.

The main result of this section reads as follows. (It will be applied a couple of times

in the subsequent section.)
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Lemma 2.4 Let Ω be a minimum strong geodetic set of G�Pr. If r > diam(G)
(|Ω|

2

)
+

|Ω|, then sg(G�Pr) ≥ d2
√
|V (G)| e.

Proof. Applying Lemma 2.3 we infer that G�Pr contains a G-layer, say Gi, such that

no edge of Gi lies on a path from Ĩ(Ω) and such that V (Gi) ∩ Ω = ∅. Note that i 6= 1

and i 6= r, for otherwise the vertices of G1 (resp. Gr) would not be covered with the

paths from Ĩ(Ω). We can hence partition Ω into non-empty sets Ω1 and Ω2 by setting

Ω1 = Ω ∩

i−1⋃
j=1

Gj

 and Ω2 = Ω ∩

 r⋃
j=i+1

Gj

 ,

cf. Fig. 2.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

...

...

...

...

...

G1 Gi Gr

Figure 2: The G-layer Gi guaranteed by Lemma 2.3 is neither the first nor the last

G-layer.

In order to cover the vertices of Gi, we must have |Ĩ(Ω)| ≥ |V (G)|. This in turn

implies that |Ω1| · |Ω2| ≥ |V (G)|. Since the arithmetic mean is not smaller than the

geometric mean, we have

|Ω|
2

=
|Ω1|+ |Ω2|

2
≥
√
|Ω1| · |Ω2| ≥

√
|V (G)| .

Thus |Ω| ≥ 2
√
|V (G)|. Since the number of vertices is an integer we conclude that

sg(G�Pr) ≥ d2
√
|V (G)| e. �

3 Thin grids and cylinders

In this section we determine the strong geodetic number of thin grids Pr �Pn (r � n)

and thin cylinders Pr �Cn (r � n). (The geodetic number in Cartesian products was
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investigated in [1, 19], while in [4] and in [3] it was studied on strong products and

lexicographic products, respectively.) Recall that by our convention on the vertex sets

of paths and cycles, V (Pr �Pn) = V (Pr �Cn) = {(i, j) : i ∈ [r], j ∈ [n]}.

Lemma 3.1 If 2 ≤ n ≤ r, then sg(Pr �Pn) ≤ d2
√
n e.

Proof. In order to prove the inequality, we need to construct a strong geodetic set of

cardinality d2
√
n e.

We first consider the case when n is a perfect square, n = k2. For each i ∈ [k] define

the vertices ai and bi of Pr �Pn with

ai = (1, (i− 1)k + i),

bi = (r, (i− 1)k + i),

and set S = {a1, a2, . . . , ak} ∪ {b1, b2, . . . , bk}. Note that a1 = (1, 1), b1 = (r, 1),

ak = (1, k2), and bk = (r, k2) are the four vertices of Pr �Pn of degree 2 and that

|S| = 2k = 2
√
n. Now we show that S is a strong geodetic set of Pr �Pn by constructing

Ĩ(S) such that V (Ĩ(S)) = V (Pr �Pn). It will suffice to select a geodesic for each pair

of vertices ai and bj to achieve our goal.

For each i ∈ [k] there is a unique ai, bi-geodesic which thus must belong to Ĩ(S).

We next inductively add geodesics to Ĩ(S). First, add geodesics to Ĩ(S) one by one

from a1 to respectively b2, . . . , bk as follows. Start in a1 and traverse the first column

until the first not yet traversed row is reached. Then traverse this row and complete

the path by traversing the last column until the vertex bj that is just considered is

reached. These paths thus cover k− 1 rows. Then proceed along the same way for the

vertices a2, . . . , ak−1, respectively covering k−2, . . . , 1 new rows. Repeat next the above

procedure by inductively construction the geodesics from ak, . . . , a2 to the vertices bj .

In this way the remaining rows are covered. The construction is illustrated in Fig. 3.

Assume next that n = k2 +`, where 1 ≤ ` ≤ k. In this case d2
√
n e = 2k+1. Define

the vertices ai and bi as above and set

S = {a1, a2, . . . , ak} ∪ {b1, b2, . . . , bk} ∪ {(1, n)} .

As in the previous case, all the vertices of the subgraph Pr �Pn can be covered using

the vertices from {(1, i2), (r, i2) : i ∈ [k]}. Then it is not difficult to show that the

vertex (1, n) will take care of the remaining vertices of Pr �Pn. Since |S| = 2k + 1, we

are done also in this case.
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Figure 3: Pr �P42 and the geodesics from Ĩ(S) between ai and bj , where i < j.

Finally, suppose that n = k2 +`, where k+1 ≤ ` ≤ 2k. In this case d2
√
n e = 2k+2.

Setting

S = {a1, a2, . . . , ak} ∪ {b1, b2, . . . , bk} ∪ {(1, n), (r, n)}

we can argue similarly as above that S is a strong geodetic set of Pr �Pn. �

The first main result of this section reads as follows.

Theorem 3.2 If r >
(d2√ne

2

)
(n− 1) + d2

√
ne, then sg(Pr �Pn) = d2

√
n e.

Proof. Let Ω be a minimum strong geodetic set of Pr �Pn. By Lemma 3.1 we know

that |Ω| ≤ d2
√
n e. Hence

r >

(
d2
√
ne

2

)
(n− 1) +

⌈
2
√
n
⌉
≥
(
|Ω|
2

)
(n− 1) + |Ω| .

As diam(Pn) = n− 1, Lemma 2.4 implies that sg(Pr �Pn) = |Ω| ≥ d2
√
n e. �

Of course, it would be desirable to determine the exact strong geodetic number for

all grids. To see that Theorem 3.2 cannot be extended to all grids consider the product

P7 �P7. In Fig. 4 we have produced a strong geodetic set consisting of 5 vertices. Thus

sg(P7 �P7) ≤ 5 <
⌈
2
√

7
⌉

= 6.

In the rest of the section we consider cylinders Pr �Cn and prove an analogous

result for thin cylinders as we did for thin grids. We start with:
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Figure 4: The blue bullets form a strong geodetic set of P7 �P7. For the sake of clarity,

only two geodesics are drawn. The reader can easily identify other geodesics.

Lemma 3.3 If 2 ≤ n ≤ r, then sg(Pr �Cn) ≤ d2
√
n e.

Proof. The proof of Lemma 3.1 is modified to accommodate cylinders. We first consider

the case when n is a perfect square, n = k2. For each i ∈ [k] define the vertices ai and

bi of Pr �Cn with

ai = (1, (i− 1)k + 1),

bi = (r, (i− 1)k + 1),

and set S = {a1, a2, . . . , ak} ∪ {b1, b2, . . . , bk}. We claim that S is a strong geodetic set

of Pr �Cn by constructing Ĩ(S) such that V (Ĩ(S)) = V (Pr �Cn).

Assume first that k is odd. Select the geodesics between a1 and b2, b3, . . . , bbk/2c and

geodesics between a2 and b1, bk, . . . , bdk/2e+2 such that all the Pr-layers P 2
r , . . . , P

k−1
r

are covered by them. See Figs. 5 and 6, where the case P2 �C25 is illustrated; that is,

r = 2 and k = 5.

By symmetry we can design geodesics starting from ai and ai+1 such that all the

corresponding Pk-layers are covered. In conclusion, S is a strong geodetic set. If k is

even, we can proceed similarly to verify that S is a strong geodetic set also in this case.

Finally, if n = k2 + ` and 1 ≤ ` ≤ 2k, then by a similar construction as in the proof

of Lemma 3.1 (by adding either one or two new vertices to S, depending on whether

1 ≤ ` ≤ k or k + 1 ≤ ` ≤ 2k, the construction is completed. �

We are now ready for the second main result of this section. It will be deduced

similarly as Theorem 3.2.
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Figure 5: The paths marked by red edges are members of Ĩ(S). The first geodesic is

between a1 and b2 and the second geodesic is between a1 and b3.

Figure 6: The paths marked by red edges are members of Ĩ(S). The first geodesic is

between a2 and b1 and the second geodesic is between a2 and b5.

Theorem 3.4 If r >
(d2√ne

2

) ⌊
n
2

⌋
+ d2
√
ne, then sg(Pr �Cn) = d2

√
n e.
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Proof. Let Ω be a minimum strong geodetic set of Pr �Cn. From Lemma 3.3 we know

that |Ω| ≤ d2
√
n e. Hence

r >

(
d2
√
ne

2

)⌊n
2

⌋
+
⌈
2
√
n
⌉
≥
(
|Ω|
2

)⌊n
2

⌋
+ |Ω| .

As diam(Cn) =
⌊
n
2

⌋
, Lemma 2.4 implies that sg(Pr �Cn) = |Ω| ≥ d2

√
n e. �

4 Further research

In this paper we have studied the strong geodetic problem on Cartesian product graphs

and determined the strong geodetic number for “thin” grids and cylinders. The first

natural problem is of course to determine the strong geodetic number for all grids and

cylinders. Next it would be interesting to consider the strong geodetic number on

additional interesting Cartesian product graphs, such as torus graphs (product of two

cycles) as well as on general Cartesian products. More generally, we can ask for the

strong geodetic number on Cartesian product of more than two factors, in particular

on multidimensional grid graphs.
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